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Abstract. Recently, Tu and Deng [3] proposed a combinatorial conjecture about binary strings,
and, on the assumption that the conjecture is correct, they obtained two classes of Boolean func-
tions which are both algebraic immunity optimal, the first of which are also bent functions. The
second class gives balanced functions, which have optimal algebraic degree and the best nonlin-
earity known up to now. In this paper, using three different approaches, we prove this conjecture
is true in many cases with different counting strategies. We also propose some problems about
the weight equations which are related to this conjecture. Because of the scattered distribution,
we predict that an exact count is difficult to obtain, in general.

1. Introduction

In [3], Tu and Deng proposed the following combinatorial conjecture.

Conjecture 1.1. Let St = {(a, b) | a, b ∈ Z2k−1, a + b ≡ t (mod 2k − 1), w(a) + w(b) ≤ k − 1},
where 1 ≤ t ≤ 2k − 2, k ≥ 2, and w(x) is the Hamming weight of x. Then, the cardinality
#St ≤ 2k−1.

They validated the conjecture by computer for k ≤ 29. Based on this conjecture, Tu and Deng [3]
constructed some classes of Boolean functions with many optimal cryptographic properties. It
is perhaps worth mentioning that these functions (under some slight modifications) have the
best collection of cryptographic properties currently known for a Boolean function.

In this paper we attack this conjecture and prove it for many parameters, dependent upon
the binary weight of t. We found out that the distribution of the pairs in St is very scattered.
With our method, the counting complexity increases directly with the weight of t, or t′, where
t′ = 2k − t. Our counting approach is heavily dependent on the number of solutions of the
equation w(2i1 + 2i2 + · · ·+ 2is + x) = r + w(x), where 2i1 + 2i2 + · · ·+ 2is = t or t′.

This paper is organized as follows. In Section 2, we introduce some notations and basic facts
about the binary weight functions which will be frequently used in the rest of the paper. In
Section 3, we prove that the conjecture is true when w(t) = 1, 2. In Section 4 we prove the
conjecture when t = 2k − t′, w(t′) ≤ 2. In Section 5, we prove the conjecture when t = 2k − t′,
3 ≤ w(t′) ≤ 4 and t′ is odd. In Section 6, we give some open questions about the number of
solutions of w(2i1 + 2i2 + · · · + 2is + x) = r + w(x), where 0 ≤ x ≤ 2k − 1 and 0 ≤ i1 < i2 <
. . . < is ≤ k − 1.

Since our purpose is to attack the previous combinatorial conjecture, we will not discuss the
cryptographic significance of functions constructed assuming the above conjecture. Since we first
wrote the paper and posted it on ePrint, several other works have been published [1, 2, 4] on this
important class of functions. Our method of attacking the conjecture is somewhat ad-hoc, and
covers several cases, which are not covered by the more recent paper [2]. In turn, the paper [2],
also gives several results, which are not covered by our approach.
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2. Preliminaries

If x is an nonnegative integer with binary expansion x = x0+x12+x222+· · · (xi ∈ F2 = {0, 1}),
we write x = (x0x1x2....). The (Hamming) weight (sometimes called the sum of digits) of x is
w(x) =

∑
i xi. The following lemma is well known and easy to show.

Lemma 2.1. The following statements are true:

w(2k − 1− x) = k − w(x), 0 ≤ x ≤ 2k − 1;

w(x+ 2i) ≤ w(x), if xi = 1;

w(x+ y) ≤ w(x) + w(y), with equality if and only if xi + yi ≤ 1, for any i;

w(x) = w(x− 1)− i+ 1, x ≡ 2i (mod 2i+1), i.e., the first nonzero digit is xi.

The last statement implies that: w(x) = w(x − 1) + 1 if x is odd; w(x) = w(x − 1) if x ≡ 2
(mod 4); w(x) = w(x − 1) − 1 if x ≡ 4 (mod 8), etc., and so, for two consecutive integers, the
weight of the even integer is never greater than the weight of the odd integer.

Lemma 2.2. If 0 ≤ x ≤ 2m − 1 and 0 ≤ i < j ≤ m− 1, then:

(1) w(x+ 2i + 2j) = 1 + w(x) if and only if
xi = 0, xj = 1, xj+1 = 0,
or, xi = 1, xi+1 = 0, xj = 0 (j > i+ 1);

(2) w(x+ 2i + 2j) = w(x) if and only if
xi = 0, xj = 1, xj+1 = 1, xj+2 = 0 (j < m− 1);
xi = 1, xi+1 = 1, xi+2 = 0, xj = 0 (j > i+ 2);
xi = 1, xi+1 = 0, xj = 1, xj+1 = 0 (j > i+ 1);
or, xi = 1, xj = 1, xj+1 = 0 (j = i+ 1).

Proof. The proof of the above lemma is rather straightforward, and we sketch below the argu-
ment for the solutions of w(x + 2i + 2j) = 1 + w(x). We look at the binary sum x + 2i + 2j ,
where

2i + 2j = . . . 0
i
10 . . . 0

j
10 . . .

x = . . . xi . . . xj xj+1 . . .

and we consider four cases:
Case 1: xi = 0, xj = 0; this is impossible, since then, w(x+ 2i + 2j) = 2 + w(x).
Case 2: xi = 0, xj = 1; in this case, it is obvious that one needs xj+1 = 0.
Case 3: xi = 1, xj = 0; as in Case 2, we have xi+1 = 0 and j > i+ 1.
Case 4: xi = 1, xj = 1; this case is impossible by the second item of Lemma 2.1.

The second part of the lemma can be proved similarly. �

The previous result can be used to show the next lemma, whose straightforward proof is
omitted.

Lemma 2.3. Given a positive integer m, let

N (i,j)
r = #{x | 0 ≤ x ≤ 2m − 1, w(2i + 2j + x) = r + w(x)}, where 0 ≤ i < j ≤ m− 1.

Then N
(i,j)
2 = 2m−2, N

(i,j)
r = 0 if r ≥ 3.

Further, if r = 1, then N
(i,j)
1 =


2m−2 + 2m−3, i+ 1 < j = m− 1
2m−2, i+ 1 = j = m− 1
2m−2, i+ 1 < j ≤ m− 2
2m−3, i+ 1 = j ≤ m− 2.
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Finally, if r = 0, then N
(i,j)
0 =



2m−3 + 2m−4, i+ 2 < j = m− 1
2m−3, i+ 2 = j = m− 1
2m−2, i+ 1 = j = m− 1
2m−2, i+ 2 < j = m− 2
2m−3 + 2m−4, i+ 2 = j = m− 2
2m−2, i+ 1 = j = m− 2
2m−3 + 2m−4, i+ 2 < j ≤ m− 3
2m−3, i+ 2 = j ≤ m− 3
2m−3 + 2m−4, i+ 1 = j ≤ m− 3.

Similarly, as in the previous two lemmas, we have the next case.

Lemma 2.4. Let N
(i,j,l)
r = #{x | 0 ≤ x ≤ 2m − 1, w(2i + 2j + 2l + x) = r + w(x)}, where

0 ≤ i < j < l ≤ m− 1. The following hold:

(1) If r = 3, w(2i + 2j + 2l + x) = 3 + w(x)⇔ xi = xj = xl = 0; Further, N
(i,j,l)
3 = 2m−3.

(2) If r = 2, w(2i + 2j + 2l + x) = 2 + w(x)⇔
xi = 0, xj = 0, xl = 1, xl+1 = 0;

or, xi = 0, xj = 1, xj+1 = 0, xl = 0 (l > j + 1);
or, xi = 1, xi+1 = 0, xj = 0, xl = 0 (j > i+ 1).

Further, N
(i,j,l)
2 =



2m−2, i+ 2 < j + 1 < l = m− 1
2m−3 + 2m−4, i+ 2 = j + 1 < l = m− 1
2m−3 + 2m−4, i+ 2 < j + 1 = l = m− 1
2m−3, i+ 2 = j + 1 = l = m− 1
2m−3 + 2m−4, i+ 2 < j + 1 < l ≤ m− 2
2m−3, i+ 2 = j + 1 < l ≤ m− 2
2m−3, i+ 2 < j + 1 = l ≤ m− 2
2m−4, i+ 2 = j + 1 = l ≤ m− 2.

(3) If r = 1, w(2i + 2j + 2l + x) = 1 + w(x)⇔
xi = 0, xj = 0, xl = 1, xl+1 = 1, xl+2 = 0 (l ≤ m− 2);

or, xi = 0, xj = 1, xj+1 = 1, xj+2 = 0, xl = 0 (l > j + 2);
or, xi = 0, xj = 1, xl = 1, xl+1 = 0 (l = j + 1);
or, xi = 1, xi+1 = 1, xi+2 = 0, xj = 0, xl = 0 (j > i+ 2);
or, xi = 1, xj = 0, xj+1 = 0, xl = 0 (j = i+ 1, l > j + 1);
or, xi = 0, xj = 1, xj+1 = 0, xl = 1, xl+1 = 0 (l > j + 1);
or, xi = 1, xi+1 = 0, xj = 0, xl = 1, xl+1 = 0 (j > i+ 1);
or, xi = 1, xi+1 = 0, xj = 1, xj+1 = 0, xl = 0 (l > j + 1, j > i+ 1).

Further,

N
(i,j,m−1)
1 =



2m−3 + 2m−4 + 2m−5, i+ 4 < j + 2 < l = m− 1
2m−3 + 2m−4, i+ 4 = j + 2 < l = m− 1
2m−3 + 2m−5, i+ 3 = j + 2 < l = m− 1
2m−3 + 2m−4, i+ 4 < j + 2 = l = m− 1
2m−3 + 2m−5, i+ 4 = j + 2 = l = m− 1
2m−3, i+ 3 = j + 2 = l = m− 1
2m−3 + 2m−4 + 2m−5, i+ 3 < j + 1 = l = m− 1
2m−3 + 2m−4, i+ 3 = j + 1 = l = m− 1
2m−3, i+ 2 = j + 1 = l = m− 1
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N
(i,j,m−2)
1 =



2m−3 + 2m−4 + 2m−5, i+ 4 < j + 2 < l = m− 2
2m−3 + 2m−4, i+ 4 = j + 2 < l = m− 2
2m−3 + 2m−4, i+ 3 = j + 2 < l = m− 2
2m−3 + 2m−4, i+ 4 < j + 2 = l = m− 2
2m−3 + 2m−5, i+ 4 = j + 2 = l = m− 2
2m−3 + 2m−5, i+ 3 = j + 2 = l = m− 2
2m−3 + 2m−4, i+ 3 < j + 1 = l = m− 2
2m−3 + 2m−5, i+ 3 = j + 1 = l = m− 2
2m−3, i+ 2 = j + 1 = l = m− 2,

N
(i,j,l)
1 =



2m−3 + 2m−4, i+ 4 < j + 2 < l ≤ m− 3
2m−3 + 2m−5, i+ 4 = j + 2 < l ≤ m− 3
2m−3 + 2m−5, i+ 3 = j + 2 < l ≤ m− 3
2m−3 + 2m−5, i+ 4 < j + 2 = l ≤ m− 3
2m−3, i+ 4 = j + 2 = l ≤ m− 3
2m−3, i+ 3 = j + 2 = l ≤ m− 3
2m−3 + 2m−5, i+ 3 < j + 1 = l ≤ m− 3
2m−3, i+ 3 = j + 1 = l ≤ m− 3
2m−4 + 2m−5, i+ 2 = j + 1 = l ≤ m− 3.

Since integers b will be uniquely determined by a in St, we will count the number of such a’s.
When a ≤ t, the counting strategy is different from that of a > t. Hence, we will partition the
set of a’s into two subsets:
Group I: a = 0, 1, . . . , t, b = t− a;
Group II: a = t+ v, b = 2k − 1− v, v = 1, 2, . . . , 2k − t− 2.

In the following three sections, we will find the number of a’s which satisfy w(a)+w(b) ≤ k−1.
For ease in writing and to distinguish between the above two groups, we let σ := w(a)+w(t−a)
corresponding to Group I, and we let Σ := w(t + v) + w(2k − 1 − v), corresponding to Group
II. So, in Group II, the number of a will be equal to the number of v. The equation Σ = k ± r
or σ = k ± r will usually be reduced to some cases of w(2i1 + 2i2 + · · · + 2is + x) = r + w(x)
which have been discussed in this section (but we will consider the solutions only in Group I
or II). In both groups, sometimes we directly count the number of solutions in St. Oftentimes,
though, we get the number of solutions Σ = k + r (or σ = k + r), r ≥ 0, then subtract it from
the corresponding group cardinality.

3. The conjecture is true for t = 2i and t = 2j + 2i

Theorem 3.1. We have #St ≤ 2k−1, t = 2i, 0 ≤ i ≤ k − 1.

Proof. In Group II, 1 ≤ v ≤ 2k − 2i − 2. So,

Σ = w(2i + v) + k − w(v) ≤ 1 + k.

Then

Σ = k + 1⇔ w(2i + v) = 1 + w(v)⇔ vi = 0.

There are 2k−1 v, 0 ≤ v ≤ 2k − 1, with vi = 0. When v > 2k − 2i − 1 then vi 6= 0. Moreover,
v = 2k − 2i − 1 and v = 0 are two solutions of the above equation. Hence, there are 2k−1 − 2 v
(or a) in Group II such that Σ = 1 + k. So, if i = k − 1, Group II makes no contributions to St
(since all the 2k−1 − 2 v’s (or a’s) make Σ = 1 + k). When i ≤ k − 2,

Σ = k ⇔ w(2i + v) = w(v)⇔ vi = 1, vi+1 = 0.
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There are 2k−2 v, 0 ≤ v ≤ 2k − 1, such that Σ = k. When v ≥ 2k − 2i − 1, vi+1 = 1, and 0 is
not a solution of the above equation. Therefore, all v’s such that vi = 1 and vi+1 = 0 must be
between 1 and 2k − 2i − 2. Hence, there are 2k−2 a’s such that Σ = k.

In summary, there are exactly 2k − 2i − 2− (2k−1 − 2)− 2k−2 = 2k−2 − 2i a’s in St belonging
to Group II when i ≤ k − 2.

In Group I, 0 ≤ a ≤ t. Let

σ = w(a) + w(2i − 1− (a− 1)) = w(a) + i− w(a− 1){
= i+ 1 if a ≡ 1 (mod 2)
≤ i if a ≡ 0 (mod 2),

which gives σ ≤ i + 1 ≤ k − 1 when i ≤ k − 2. So when i ≤ k − 2, All a’s in Group I belong
to St. But Group I contributes only 1 + t

2 = 1 + 2k−2 to St if i = k − 1. Combining these two

groups, we get St = 1 + 2k−2 ≤ 2k−1, always. �

When the weight of t is increased by 1, the counting complexity increases significantly.

Theorem 3.2. We have #St ≤ 2k−1 when t = 2i + 2j, 0 ≤ i < j ≤ k − 1, k ≥ 4.

Proof. We consider three cases:
Case A: j ≤ k − 3.

In Group II (1 ≤ v ≤ 2k − 2j − 2i − 2), let

Σ = w(2i + 2j + v) + w(2k − 1− v) = w(2i + 2j + v) + k − w(v) ≤ 2 + k.

Further,

Σ = 2 + k ⇔ w(2i + 2j + v) = 2 + w(v)⇔ vi = vj = 0.

Then, v = 0 and v = 2k−2j−2i−1 are two solutions. When v > 2k−2j−2i−1, then vi = 1 or
vj = 1. Hence, we get 2k−2 − 2 v (or a) such that Σ = 2 + k. (Note: This result will be reused
in Case C). Next,

Σ = 1 + k ⇔ w(2i + 2j + v) = 1 + w(v)⇔
{
vi = 0 vj = 1 vj+1 = 0
or, vi = 1 vi+1 = 0 vj = 0 (j > i+ 1)

by Lemma 2.3. Certainly, v = 0 is not a solution. If v ≥ 2k− 2j − 2i− 1, then v does not satisfy
any of the above conditions. In other words, all solutions are between 1 and 2k − 2j − 2i − 2.

Hence, there are exactly

{
2k−2, j > i+ 1
2k−3, j = i+ 1

a’s such that Σ = k + 1.

Further, Σ = k ⇔ w(2i + 2j + v) = w(v). It is easy to check that v = 0 is not a solution and
any v ≥ 2k − 2j − 2i − 1 does not satisfy any condition of Lemma 2.3 when r = 0. Hence, there

are exactly N
(i,j)
0 v such that Σ = k, where

N
(i,j)
0 ≥

{
2k−3 j > i+ 1
2k−3 + 2k−4 j = i+ 1.

It follows that there are at most{
2k − 2j − 2i − 2− (2k−2 − 2)− 2k−2 − 2k−3, j > i+ 1
2k − 2j − 2i − 2− (2k−2 − 2)− 2k−3 − (2k−3 + 2k−4), j = i+ 1

=

{
2k−1 − 2j − 2i − 2k−3, j > i+ 1
2k−1 − 2j − 2i − 2k−4, j = i+ 1

a’s such that Σ ≤ k − 1 in Group II.

In Group I there are only t+ 1 = 2j + 2i + 1 a’s. Thus,

#St ≤
{

2k−1 − 2k−3 + 1, j > i+ 1
2k−1 − 2k−4 + 1, j = i+ 1,

and so, #St ≤ 2k−1, and case A is shown.
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Case B: j = k − 2.
In Group II, 1 ≤ v ≤ 2k − 2k−2 − 2i − 2. Let

Σ := w(2k−2 + 2i + v) + k − w(v) ≤ 2 + k.

First, if Σ = 2+k, then, as in Case A, we get exactly 2k−2−2 a’s such that Σ = 2+k. Secondly,

if Σ = 1 + k, as in Case A, we get exactly

{
2k−2 k − 2 > i+ 1
2k−3 k − 2 = i+ 1

a’s such that Σ = 1 + k.

If Σ = k, that is, w(2k−2 + 2i + v) = w(v), from Lemma 2.3 (m = k, r = 0), then the number
of solutions with 0 ≤ v ≤ 2k − 1 is

2k−2, i+ 2 < j = k − 2
2k−3 + 2k−4, i+ 2 = j = k − 2
2k−2, i+ 1 = j = k − 2.

The integers v satisfying the first condition in Lemma 2.3 are greater than 2k−2k−2−2i−1. This
means that there are 2k−3 many v (note that always vj+2 = vk = 0) that should be excluded
from the solutions of Σ = k. Hence, we get

2k−3, i+ 2 < k − 2
2k−4, i+ 2 = k − 2
2k−3, i+ 1 = k − 2

a’s such that Σ = k.
In summary, the number of a’s with Σ ≥ k is

2k−2 − 2 + 2k−2 + 2k−3, i+ 2 < k − 2
2k−2 − 2 + 2k−2 + 2k−4, i+ 2 = k − 2
2k−2 − 2 + 2k−3 + 2k−3, i+ 1 = k − 2

=


2k−1 − 2 + 2k−3, i+ 2 < k − 2
2k−1 − 2 + 2k−4, i+ 2 = k − 2
2k−1 − 2, i+ 1 = k − 2.

So, the number of a’s in Group II with Σ ≤ k − 1 is
2k − 2j − 2i − 2− (2k−1 − 2 + 2k−3) = 2k−1 − 2j − 2i − 2k−3, i+ 2 < k − 2
2k − 2j − 2i − 2− (2k−1 − 2 + 2k−4) = 2k−1 − 2j − 2i − 2k−4, i+ 2 = k − 2
2k − 2j − 2i − 2− (2k−1 − 2) = 2k−1 − 2j − 2i, i+ 1 = k − 2.

In Group I, there are only t+1 = 2j +2i +1 a’s. When i+1 = k−2, and a = 2k−3 +1, we get
w(a) + w(t − a) = k. Hence, combining all the a’s in the Groups I and II, we get #St ≤ 2k−1,
and Case B is shown.
Case C: j = k − 1.

In Group II, 1 ≤ v ≤ 2k−1 − 2i − 2. Let Σ = w(2k−1 + 2i + v) + k − w(v) ≤ 2 + k.
If Σ = 2 + k, as in Case A, Group II, there are exactly 2k−2 − 2 a’s such that Σ = 2 + k.
Next, Σ = 1 + k ⇔ w(2k−1 + 2i + v) = 1 +w(v). By Lemma 2.3, we must have k − 1 > i+ 1

(since vj = vk−1 = 1 is impossible due to v ≤ 2k−2j−2i−2 < 2j) and vi = 1, vi+1 = 0, vk−1 = 0

(if k− 1 > i+ 1). Certainly, v = 0 is not a solution. If v ≥ 2k − 2k−1 − 2i − 1 = (2k−1 − 1)− 2i,
then v does not satisfy vi = 1,vi+1 = 0, vk−1 = 0. So, there are exactly 2k−3 a’s such that
Σ = 1 + k (only if k − 1 > i+ 1).

Further, Σ = k ⇔ w(2k−1 + 2i + v) = w(v), 1 ≤ v ≤ 2k−1 − 2i − 2. By Lemma 2.3, we infer
that vi = 1, vi+1 = 1, vi+2 = 0, vk−1 = 0 (k − 1 > i + 2). v ≥ 2k−1 − 2i − 1 is impossible. So,
there are exactly 2k−4 a’s such that Σ = k (only if k − 1 > i + 2). So, the number of a’s with
Σ ≥ k is 

2k−2 − 2 + 2k−3 + 2k−4, i+ 2 < k − 1
2k−2 − 2 + 2k−3, i+ 2 = k − 1
2k−2 − 2, i+ 1 = k − 1.
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In Group II, the number of a’s that makes Σ ≤ k − 1 is
2k−1 − 2i − 2− (2k−2 − 2 + 2k−3 + 2k−4) = 2k−4 − 2i, i+ 2 < k − 1
2k−1 − 2i − 2− (2k−2 − 2 + 2k−3) = 0, i+ 2 = k − 1
2k−1 − 2i − 2− (2k−2 − 2) = 0, i+ 1 = k − 1.

We now look at solutions from Group I. If i = 0 (call it, Case C1), then σ = w(a) +w(2k−1 +

1− a) = w(a) + k− 1−w(a− 2) = k when a ≡ 2, 3 (mod 4). So, there are at most 2k−2 + 2 a’s
between 0 and t = 2k−1 + 1 such that σ ≤ k − 1. Combining with the results in Group II, we
get #St ≤ 2k−2 + 2 + 2k−4 − 20 = 2k−2 + 2k−4 + 1 ≤ 2k−1.

Now, we assume i ≥ 1. If i ≥ 1, j = k−1 ≥ i+2 (Case C2), then σ = w(a)+w(2k−1 +2i−a).

When 0 ≤ a ≤ 2i, σ = w(a) + 1 + w(2i − a) = w(a) + 1 + i − w(a − 1) ≤ i + 2 ≤ k − 1.
So, this contributes 2i + 1 a’s to St. When 2i + 1 ≤ a ≤ 2k−1 + 2i, then (let x = a − 2i − 1,
0 ≤ x ≤ 2k−1 − 1)

σ = w(a) + w(2k−1 − 1− (a− 2i − 1))

= w(a) + k − 1− w(a− 2i − 1)

= w(x+ 2i + 1) + k − 1− w(x) ≤ 1 + k.

First, if σ = k + 1⇔ w(x+ 2i + 1) = 2 + w(x), there are exactly 2k−1−2 = 2k−3 x’s (or a’s).
If σ = k ⇔ w(x+ 2i + 1) = 1 + w(x), by Lemma 2.3 (m = k − 1), then{

x0 = 0, xi = 1, xi+1 = 0
x0 = 1, x1 = 0, xi = 0 (i > 1).

The number of solutions x (or a) is

{
2k−3, 1 < i ≤ k − 3
2k−4, 1 = i ≤ k − 3

. Hence, the number of a’s with

σ ≤ k − 1 is 2k−1 − 2k−3 −
{

2k−3 1 < i ≤ k − 3
2k−4 1 = i ≤ k − 3

=

{
2k−2, 1 < i ≤ k − 3
2k−2 + 2k−4, 1 = i ≤ k − 3.

Putting all this together, in Group I, the number of a’s in St is{
2k−2 + 2i + 1, 1 < i ≤ k − 3
2k−2 + 2k−4 + 2i + 1, 1 = i ≤ k − 3

≤
{

2k−2 + 2k−3 + 1, 1 < i ≤ k − 3
2k−2 + 2k−3 + 2k−4 + 1, 1 = i ≤ k − 3.

Combining these estimates with the ones from Group II, we get (in any case) #St ≤ 2k−1.
Finally, we assume that j = k − 1 = i+ 1, that is, j = k − 1 and i = k − 2 (Case C3). When

0 ≤ a ≤ 2k−2, then

σ = w(a) + w(2k−1 + 2k−2 − a)

= w(a) + 1 + w(2k−2 − a)

= w(a) + 1 + k − 2− w(a− 1)

=

{
k a ≡ 1 (mod 2)
≤ k − 1 a ≡ 0 (mod 2),

which contributes 1 + 2k−3 a’s to St.
When 2k−2 + 1 ≤ a ≤ 2k−1 + 2k−2, then (let x = a− 2k−2 − 1, 0 ≤ x ≤ 2k−1 − 1)

σ = w(a) + k − 1− w(a− 2k−2 − 1)

= w(x+ 2k−2 + 1) + k − 1− w(x) ≤ 1 + k.

First, as before, when σ = k + 1, there are 2k−1−2 = 2k−3 x (or a).
Next, σ = k, that is, w(x+ 2k−2 + 1) = 1 +w(x), and as in Lemma 2.3 (m = k− 1), we have

x0 = 0, xk−2 = 1; or, x0 = 1, x1 = 0, xk−2 = 0. Hence, the number of solutions is 2k−3 + 2k−4, if



8 T. W. CUSICK, YUAN LI AND PANTELIMON STĂNICĂ

1 < i = k − 2. Therefore, the number of a’s in St is 2k−1 − 2k−3 − (2k−3 + 2k−4) = 2k−3 + 2k−4,
1 < i = k − 2. Group I contributes 1 + 2k−3 + 2k−3 + 2k−4 = 2k−2 + 2k−4 + 1 solutions to St.

Combining these estimates with the ones from Group II, we have

#St ≤ 2k−2 + 2k−4 + 1 + 2k−4 − 2i < 2k−1,

and this completes the proof of this theorem. �

4. The conjecture is true for t = 2k − 2i and t = 2k − 2j − 2i

When t = 2k − 2i, i must be at least 1.

Theorem 4.1. We have #St ≤ 2k−1, t = 2k − 2i, 1 ≤ i ≤ k − 1.

Proof. In Group II, 1 ≤ v ≤ 2i − 2.

Σ = w(2k − 2i + v) + k − w(v)

= 2k − w(2i − v − 1)− w(v) = 2k − i
≥ k + 1,

so, Group II makes no contributions to St.
We now look at Group I. If a is odd, then

σ = w(a) + w(2k − 2i − a) = w(a) + k − w(2i + a− 1)

≥ w(a) + k − (1 + w(a− 1)) = k.

Hence, there are at most 1
2 t+ 1 = 2k−1 − 2i−1 + 1 ≤ 2k−1 a’s with w(a) +w(b) ≤ k− 1, and so,

#St ≤ 2k−1. The proof is done. �

Theorem 4.2. We have #St ≤ 2k−1, t = 2k − 2j − 2i, 0 ≤ i < j ≤ k − 1.

Proof. In Group II, 1 ≤ v ≤ 2j + 2i − 2.

Σ = w(2k − 2j − 2i + v) + k − w(v)

= 2k − w(2j + 2i − v − 1)− w(v).

If 1 ≤ v ≤ 2i − 1, then Σ = 2k − 1 − w(2i − 1 − v) − w(v) = 2k − 1 − i ≥ k + 1. If
2i ≤ v ≤ 2j + 2i − 2, then Σ = 2k − w(2j − 1− (v − 2i))− w(v) = 2k − j + w(v − 2i)− w(v) ≥
2k− j+w(v− 2i)− (w(v− 2i) + 1) = 2k− j− 1 ≥ k. Thus, Group II has no contributions to St.

We now look at Group I, and consider several cases.
Case A: i = 0.

σ = w(a) + w(2k − 1− (a+ 2j)) = w(a) + k − w(a+ 2j) ≥ k − 1.

Next, if σ = k − 1 ⇔ w(a + 2j) = 1 + w(a), then there are at most 2k−1 such a’s. Hence,
#St ≤ 2k−1.

Case B: i = 1. So, t = 2k − 2j − 2 = 2k − 1− 2j − 1. Thus,

σ = w(a) + w(2k − 1− 2j − 1− a) = w(a) + k − w(2j + 1 + a) ≥ k − 2.

If σ = k − 2⇔ w(1 + 2j + a) = 2 + w(a), there are at most 2k−2 such a’s.
If σ = k − 1 ⇔ w(1 + 2j + a) = 1 + w(a), there are at most 2k−2 such a’s by Lemma 2.3.

Consequently, #St ≤ 2k−1.
Case C: i > 1 and j ≤ k − 2. Then

σ = w(a) + w(2k − 2j − 2i − a)

= w(a) + k − w(2j + 2i + a− 1)

≥ w(a) + k − 2− w(a− 1).
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If a ≡ 1 (mod 2), then σ ≥ k − 1.
Next, σ = k − 1 ⇔ w(2j + 2i + a − 1) = 2 + w(a − 1) ⇔ (a − 1)i = (a − 1)j = 0. Since

(a− 1)0 = 0, there are at most 2k−3 a’s that belong to St.
If a ≡ 2 (mod 4), then σ ≥ w(a) + k − 2− w(a− 1) = k − 2.
Next, σ = k − 2 ⇔ w(2j + 2i + a − 1) = 2 + w(a − 1), which is equivalent to (a − 1)0 =

1, (a−1)1 = 0, (a−1)i = 0, (a−1)j = 0. Thus, there are at most 2k−4 such a’s for a contribution
to St.

Further, σ = k− 1⇔ w(2j + 2i + a− 1) = 1 +w(a− 1), and by Lemma 2.3, there are at most
2k−4 such a’s (m = k, x = a− 1, (a− 1)0 = 1, (a− 1)1 = 0).

Consequently, there are at most 2k−2 a’s such that a ≡ 0 (mod 4), even if all of them belong
to St, and so, we obtain #St ≤ 2k−3 + 2k−4 + 2k−4 + 2k−2 = 2k−1.
Case D: i > 1 and j = k − 1, and so, t = 2k−1 − 2i. Then

σ = w(a) + w(2k−1 − 2i − a)

= w(a) + k − 1− w(2i + a− 1)

≥ w(a) + k − 2− w(a− 1).

When a ≡ 1 (mod 2), σ ≥ k − 1, and σ = k − 1⇔ w(2i + a− 1) = 1 + w(a− 1)⇔ (a− 1)0 =
(a− 1)i = 0. Therefore, there are at most 2k−1−2 = 2k−3 solutions to contribute to St.

When a ≡ 2 (mod 4), σ ≥ k − 2, and
σ = k−2⇔ w(2i +a−1) = 1+w(a−1)⇔ (a−1)0 = 1, (a−1)1 = 0, (a−1)i = 1. Therefore,

there are at most 2k−1−3 = 2k−4 solutions.
Further, σ = k − 1 ⇔ w(2i + a − 1) = w(a − 1) ⇔ (a − 1)0 = 0, (a − 1)1 = 1, (a − 1)i = 1,

(a− 1)i+1 = 0. There are at most 2k−1−4 = 2k−5 solutions to contribute to St.
Finally, there are at most 2k−2 a ≡ 0 (mod 4), even if all of them belong to St, we still obtain

#St ≤ 2k−3 + 2k−4 + 2k−5 + 2k−2 < 2k−1. �

5. The conjecture is true for t = 2k − 2j − 2i − 1 and t = 2k − 2l − 2j − 2i − 1

Since the proofs require many counting arguments we split our result into two theorems.

Theorem 5.1. We have #St ≤ 2k−1, if t = 2k − 2j − 2i − 1, 1 ≤ i < j ≤ k − 1.

Proof. As before, for Group II, when 1 ≤ v ≤ 2i, then

Σ = w(t+ v) + k − w(v) = 2k − w(2j + 2i − v)− w(v)

= 2k − (1 + w(2i − v))− w(v)

= 2k − 1− (i− w(v − 1))− w(v)

= 2k − i− 1 + w(v − 1)− w(v)

≥ 2k − i− 1− 1 ≥ k.

When 2i + 1 ≤ v ≤ 2j + 2i − 1, then (with x = v − 2i − 1, 0 ≤ x ≤ 2j − 2)

Σ = 2k − w(2j + 2i − v)− w(v)

= 2k − w(2j − 1− (v − 2i − 1))− w(v)

= 2k − j + w(x)− w(x+ 2i + 1)

≥ 2k − j − 2.

If j ≤ k − 2, then Σ ≥ k.
If j = k− 1, then Σ ≥ k− 1, Σ = k− 1⇔ w(x+ 2i + 1) = 2 +w(x). Thus, there are at most

2j−2 = 2k−3 many such x (v or a) contributing to St.
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In Group I, 0 ≤ a ≤ 2k − 2j − 2i − 1, and

σ = w(a) + w(2k − 2j − 2i − 1− a) = w(a) + k − w(2j + 2i + a) ≥ k − 2.

Case A: j ≤ k − 2.
Then σ = k − 2⇔ w(2j + 2i + a) = 2 + w(a), and so, there are at most 2k−2 a’s.

Next, σ = k − 1⇔ w(2j + 2i + a) = 1 + w(a), and by Lemma 2.3, the number of such a’s is
at most 2k−2. Hence, #St ≤ 0 + ak−2 + 2k−2 = 2k−1.
Case B: j = k − 1.
Then σ = k − 2, and there are at most 2k−2 such a’s.

Next, σ = k − 1 ⇔ w(2j + 2i + a) = 1 + w(a) ⇔ (as in Lemma 2.3) ai = 0, aj = ak−1 = 1,

aj+1 = 0 or ai = 1, ai+1 = 0, aj = 0, (j > i+1). But j = k−1, t < 2k−1, hence aj = 0. It means

that the first condition cannot be satisfied. So, there are at most 2k−3 such a’s. Combining this
estimate with the one from Group II, we have #St ≤ 2k−3 + 2k−2 + 2k−3 = 2k−1, and the proof
is done. �

Theorem 5.2. We have #St ≤ 2k−1, t = 2k − 2l − 2j − 2i − 1, 1 ≤ i < j < l ≤ k − 1.

Proof. We consider several cases.
Case A: l ≤ k − 3 (k ≥ l + 3 ≥ j + 4 ≥ i+ 5).
In Group II, 1 ≤ v ≤ 2l + 2j + 2i − 1, and

Σ = w(t+ v) + w(2k − 1− v)

= w(2k − 1− (2l + 2j + 2i) + v) + k − w(v)

= 2k − w(2l + 2j + 2i − v)− w(v).

If 1 ≤ v ≤ 2i, then

Σ = 2k − (2 + w(2i − v))− w(v)

= 2k − 2− w((2i − 1)− (v − 1))− w(v)

= 2k − 2− i+ w(v − 1)− w(v)

≥ 2k − 2− i− 1 ≥ k + 2.

If 2i + 1 ≤ v ≤ 2j , then

Σ = 2k − (1 + w(2j + 2i − v))− w(v)

= 2k − 1− w(2j − 1− (v − 2i − 1))− w(v)

= 2k − 1− j + w(v − 2i − 1)− w(v)

≥ 2k − 1− j − 2 ≥ k + 1.

If 2j + 1 ≤ v ≤ 2j + 2i, then

Σ = 2k − (1 + w(2j + 2i − v))− w(v)

= 2k − 1− w(2i − 1− (v − 2j − 1))− w(v)

= 2k − 1− i+ w(v − 2j − 1)− w(v)

≥ 2k − 1− i− 2 ≥ k + 2.

If 2j + 2i + 1 ≤ v ≤ 2l + 2j + 2i − 1, then

Σ = 2k − w(2l − 1− (v − 2j − 2i − 1))− w(v)

= 2k − l + w(v − 2j − 2i − 1)− w(v)

≥ 2k − l − 3 ≥ k.
Hence, Group II has no contributions to St.
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In Group I, σ = w(a) + k − w(2l + 2j + 2i + a) ≥ k − 3.
First, if σ = k − 3⇔ w(2l + 2j + 2i + a) = 3 + w(a), there are at most 2k−3 such a’s.
Next, if σ = k − 2⇔ w(2l + 2j + 2i + a) = 2 + w(a), there are at most 2k−3 + 2k−4 such a’s

by Lemma 2.4 (note that m = k and l ≤ k − 3, r = 2).
Finally, if σ = k− 1⇔ w(2l + 2j + 2i + a) = 1 +w(a), there are at most 2k−3 + 2k−4 such a’s

by Lemma 2.4 (r = 1, l ≤ k − 3).
In summary, #St ≤ 2k−3 + 2k−3 + 2k−4 + 2k−3 + 2k−4 = 2k−1.

Case B: l = k − 2 (k = l + 2 ≥ j + 3 ≥ i+ 4).
In Group II, by the proof of Case A, there are some a’s which will contribute to St only if
2j + 2i + 1 ≤ v ≤ 2l + 2j + 2i − 1. Then

Σ = 2k − w(2l − 1− (v − 2j − 2i − 1))− w(v)

= 2k − l + w(v − 2j − 2i − 1)− w(v)

= 2k − l + w(x)− w(x+ 2j + 2i + 1)

≥ 2k − l − 3 = k − 1,

where x = v − 2j − 2i − 1, 0 ≤ x ≤ 2l − 2. If Σ = k − 1⇔ w(2l + 2j + 2i + x) = 3 +w(x), there
are at most 2l−3 = 2k−5 such a’s.

In Group I, σ = w(a) + k − w(2l + 2j + 2i + a) ≥ k − 3.
If σ = k − 3, there are at most 2k−3 such a’s.
If σ = k − 2, there are at most 2k−3 + 2k−4 such a’s.
If σ = k − 1⇔ w(2l + 2j + 2l + a) = 1 + w(a), by Lemma 2.4, with r = 1, m = k, l = k − 2,

we get xi = 0, xj = 0, xl = 1, xl+1 = 1, xl+2 = 0 ⇔ xi = 0, xj = 0 xk−2 = 1, xk−1 = 1

⇒ x ≥ 2k−1 + 2k−2 > t, so, the number of solutions of σ = k − 1 should not include this 2k−4

many. That is, there are at most 2k−3 + 2k−5 a’s such that σ = k − 1 by Lemma 2.4.
Combining Groups I and II, we get #St ≤ 2k−5 + 2k−3 + 2k−3 + 2k−4 + 2k−3 + 2k−5 = 2k−1.

Case C: l = k − 1 (k = l + 1 ≥ j + 2 ≥ i+ 3).
In Group II, by the proof of Case A, there are some a’s which will make contributions to St,
only if 2i + 1 ≤ v ≤ 2j or 2j + 2i + 1 ≤ v ≤ 2l + 2j + 2i − 1. If 2i + 1 ≤ v ≤ 2j ,

Σ = 2k − 1− j + w(v − 2i − 1)− w(v) ≥ 2k − 1− j − 2 ≥ k − 1.

First, Σ = k − 1 implies that w(v − 2i − 1) − 2 = w(v) and j = k − 2. Let x = v − 2i − 1,
0 ≤ x ≤ 2j − 2i − 1. Then w(x + 2i + 1) = 2 + w(x) has at most 2j−2 = 2k−4 solutions, so
Σ = k − 1 has at most 2k−4 solutions if j = k − 2.

If 2j + 2i + 1 ≤ v ≤ 2l + 2j + 2i − 1, then

Σ = 2k − l + w(v − 2j − 2i − 1)− w(v) ≥ k + 1− 3 = k − 2.

Let x = v − 2j − 2i − 1, 0 ≤ x ≤ 2l − 2 = 2k−1 − 2. If Σ = k − 2 we get exactly 2k−1−3 = 2k−4

solutions. If Σ = k − 1 then w(x+ 2j + 2i + 1) = w(x) + 2, by Lemma 2.4 (m = k − 1), we get

exactly N
(0,i,j)
2 solutions since 2l − 1 is not a solution. Recall that

N
(0,i,j)
2 =



2k−3, 2 < i+ 1 < j = k − 2
2k−4 + 2k−5, 2 = i+ 1 < j = k − 2
2k−4 + 2k−5, 2 < i+ 1 = j = k − 2
2k−4, 2 = i+ 1 = j = k − 2
2k−4 + 2k−5, 2 < i+ 1 < j ≤ k − 3
2k−4, 2 = i+ 1 < j ≤ k − 3
2k−4, 2 < i+ 1 = j ≤ k − 3
2k−5, 2 = i+ 1 = j ≤ k − 3.
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In Group I,

σ = w(a) + k − w(2l + 2j + 2i + a) ≥ k − 3.

If σ = k − 3, there are at most (in fact, exactly) 2k−3 solutions.
If σ = k − 2, then w(2l + 2j + 2i + a) = w(a) + 2, and the first condition of Lemma 2.4 is

satisfied (r = 2), and we get ai = 0, aj = 0, al = 1, al+1 = 0 ⇔ ai = 0, aj = 0, ak−1 = 1

⇒ a ≥ 2k−1 > t. That means 2k−3 a’s should not be counted. So, the number of solutions of
σ = k − 2 is at most 

2k−3, i+ 2 < j + 1 < l = k − 1
2k−4, i+ 2 = j + 1 < l = k − 1
2k−4, i+ 2 < j + 1 = l = k − 1
0, i+ 2 = j + 1 = l = k − 1.

If σ = k − 1, then w(2l + 2j + 2i + a) = w(a) + 1. By Lemma 2.4 (r = 1), we obtain ai = 0,
aj = 1, al = 1, al+1 = 0 (l = j + 1) ⇔ ai = 0, aj = 1, ak−1 = 1 ⇒ a > 2k−1 > t, so, there are

2k−3 a’s which should not be counted for l = j + 1.
The sixth condition of Lemma 2.4 implies ai = 0, aj = 1, aj+1 = 0, ak−1 = 1 (l > j + 1) ⇒

a > t. There are 2k−4 a’s which should not be counted for l > j + 1.
The seventh condition of Lemma 2.4 implies ai = 1, ai+1 = 0, aj = 0, ak−1 = 1 (j > i+ 1) ⇒

a > t. There are 2k−4 a’s which should not be counted for j > i + 1. In summary, we get the
number of solutions of σ = k − 1 is at most

2k−4 + 2k−5, i+ 4 < j + 2 < l = k − 1
2k−4, i+ 4 = j + 2 < l = k − 1
2k−4 + 2k−5, i+ 3 = j + 2 < l = k − 1
2k−4, i+ 4 < j + 2 = l = k − 1
2k−5, i+ 4 = j + 2 = l = k − 1
2k−4, i+ 3 = j + 2 = l = k − 1
2k−5, i+ 3 < j + 1 = l = k − 1
0, i+ 3 = j + 1 = l = k − 1
0, i+ 2 = j + 1 = l = k − 1.

If j 6= k − 2,that is, j ≤ k − 3, then

#St ≤ 2k−4 + 2k−4 + 2k−5 + 2k−3 + 2k−3 + 2k−4 + 2k−5 = 2k−1.

If j = k − 2, then

#St ≤ 2k−4 + 2k−4 + 2k−3 + 2k−3 + 2k−4 + 2k−5 = 2k−2 + 2k−3 + 2k−4 + 2k−5 < 2k−1.

This completes the proof of our theorem. �

6. Further Remarks

We observe from our analysis that the counting heavily depends on the following quantity

N (i1,i2,...,is)
r = #{x | 0 ≤ x ≤ 2k − 1, w(2i1 + 2i2 + · · ·+ 2is + x) = r + w(x)},

where 0 ≤ i1 < i2 < . . . < is ≤ k− 1. Obviously, we have N
(i1,i2,...,is)
r = 0 if r > s. We also have

N
(i1,i2,...,is)
r = 0 if r ≤ −k. A general formula may be hard to obtain, but it could be interesting

if a good upper and lower bound can be determined for given s and r.
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